Conventional Activated Sludge Wastewater Treatment Plant Flow Diagram

Aeration Opportunities in Blue

1. Sewer Mains/Lift Stations
 - Raw Waste Starts Here

2. Equalization Tank/Basin

3. Aeration Basin
 - Return Activated Sludge
 - Waste Activated Sludge

4. Sludge Digester
 - Post Aeration

5. Secondary Clarifier
 - Disinfection
 - Receiving Waters (Rivers, etc.)

Details on each Aeration Opportunity (1-5) are listed on the next page
<table>
<thead>
<tr>
<th>Location</th>
<th>System Name</th>
<th>Purpose for Aeration</th>
</tr>
</thead>
</table>
| Lift Stations
Sewer Mains
Force Mains | Odor Control -- prevent septic conditions
Solids Suspension & Oil/Grease Dispersion
Corrosion Prevention (H₂S) | |
| Equalization Tank or Basin | Odor Control -- prevent septic conditions
Solids Suspension & Oil/Grease Dispersion
Pretreatment of BOD Removal | |
| Aeration Basin
Activated Sludge Basin | BOD Removal/Nutrient Removal
Supplemental Aeration for Older Facilities
Retrofit/Replacement of Old/Existing Aeration Equipment (i.e. blowers/diffusers or surface aerators) | |
| Sludge Digester
Sludge Holding Tank | BOD Removal/Nutrient Removal
Solids Suspension & Odor Control
Freshening -- prevent septic conditions | |
| Post-Treatment Effluent Aeration | Increase DO Level to Meet Effluent Regulations -- many states have new regulations for minimum effluent DO levels... *fish and plants will die if water with no O₂ is discharged to rivers, lakes, etc.* | |

DO = Dissolved Oxygen

BOD = Biochemical Oxygen Demand... concentration of the wastewater/nutrient level

Wastewater Treatment 101: Oxygen is required to maintain a biomass (microbio) in the wastewater. The biomass uses oxygen to digest waste nutrients (BOD, etc.). After digestion, the waste particles are settled out, and separated from the water (these concentrated particles, along with the biomass are called “sludge”). The water continues on and is disinfected, aerated, and sent out to a river, lake, etc. The sludge is either de-watered and disposed of or recycled back (RAS -- Return Activated Sludge) to the aeration basin.

Competition Review: 1. Blowers/Diffusers - sub-surface grid of diffusers powered by a blower
2. Surface Aerators - shallow water limits, broadcasts odors, maintenance-intensive

Mazzei Advantages: Low Maintenance; No Fouling; No Blowers (quiet); Equipment is Land Based; Maintains Water Temperature; Energy Efficient (better than competition when water is deeper than 12’ - 15’).