Optimization of Mixing and Mass Transfer in Pipeline Ozone Contactors Using Computational Fluid Dynamics

Srikanth S. Pathapati, Angelo L. Mazzei, James R. Jackson, Paul K. Overbeck, Justin P. Bennett, Cece M. Cobar

Mazzei Injector Company, LLC, 500 Rooster Dr, Bakersfield, California, 93301, USA

Abstract

Side-stream Venturi injection (SVI) is increasingly being adopted in lieu of bubble diffusers for oxidation and disinfection in water treatment facilities driven by the cost-reductions from smaller footprint, decreased maintenance, ease of retrofit and lower infrastructure requirement. Standard ‘back-of-the-envelope’ methods for calculation of single phase (water) pressure losses and mixing may result in unrealistic predictions for gas-liquid flows. In addition, non-ideal upstream and downstream plumbing can adversely affect ozone mass transfer efficiency. Typical mass transfer calculations take a lumped approach to modeling, assuming completely mixed conditions that are derived from equilibrium chemistry principles which in turn are for quiescent, ideal flow conditions. This can result in divergent behavior in real-life installations. This paper incorporates the effect of local hydrodynamics and mixing on the overall mass transfer of ozone into water with the aid of multiphase computational fluid dynamics (CFD) modeling. CFD predictions were validated with measured data from current installations where a pipeline ozone contactor was optimized for more rapid and uniform mixing and mass transfer. Results underline the sensitivity of mixing regimes to nozzle placement, size, orientation and spacing relative to main pipeline diameter and flows.

Key words: Ozone; Ozonation; Fine Bubble Diffusion; Injection; Side-stream Venturi Injection; Basin Nozzle Manifold; Multi-phase; Computational Fluid Dynamics; CFD; Retrofit.

Introduction

Many ozone utility designs in recent years have opted for side-stream venturi injection (SVI) both for in-pipe contacting and for contact basins (Rakness, 2011; Crittenden et al., 2012; Tchobanoglu and el al., 2014). Transfer efficiency to the liquid phase is a crucial economic and...
operational consideration. For instance, unstable ozone residual readings can cause the supplying ozone generator to over/under-produce ozone. SVI systems allow for a smaller footprint and stable ozone residual (Mazzei et al., 1995; Jackson et al., 2007).

A typical ozone application is for odor control (Edwards-Brandt et al., 2007), specifically the removal of hydrogen sulfide from well water for odor control (Duranceau et al., 2010). Hydrogen sulfide (H$_2$S) is oxidized rapidly with ozone to form sulfate. The oxidation process proceeds in stages, first forming insoluble elemental sulfur. Further oxidation dissolves the elemental sulfur, forming soluble sulfite, and continued oxidation produces sulfate (Rakness, 2011). More ozone is required to completely oxidize sulfide to sulfate than is required to produce the insoluble, colloidal elemental sulfur. In 2002, the Orlando Utilities Commission (OUC) installed an air-fed ozone system utilizing diffuser contacting for the reduction of hydrogen sulfide at eight water treatment plants that were supplied water by sulfide-containing wells (Rakness, 2011). OUC has since begun retrofitting these plants with oxygen-fed ozone generators, SVI and pipeline contactors for ozone contacting with the water.

Predicting the mass transfer and mixing performance of gas-liquid systems is fraught with complexity due to the possibility of remarkably distinct flow regimes such as slug flows, bubbly flows, annular and separated flows, often occurring within the same process. Each flow regime requires a targeted approach to resolve turbulence and phase interaction in order to quantify the degree of homogeneity of mixing. Inadequate mixing can result in less than desired exposure of ozone to the target. This may cause incomplete oxidation and subsequent formation of toxic and unwanted by-products.

Traditional modeling depends on broad assumptions and simplifications which may misrepresent actual flow conditions – this is especially crucial for multiphase flows in retrofit applications in the water/wastewater industry. Computational fluid dynamics (CFD) has been applied to environmental engineering in recent years, specifically in water and wastewater treatment (Do-Quang et al., 1998). CFD is a method to solve the Navier-Stokes equations for coupled fluid and gas dynamics using a series of discretization techniques and algorithms (Anderson, 1995; Versteeg and Malalasekera, 1995).

Generally, mass transfer equations assume completely mixed conditions and are based on equilibrium chemistry principles. Thus, there is a possibility of error in predictions using standard solubility curves and mass transfer coefficients under non-ideal flow conditions. In addition to achieving the required ozone mass transfer, a stable ozone residual and overall process control are crucial parameters that influence design. There may be situations where adequate mass transfer is achieved, but the ozone residual is unstable downstream. This leads to a situation where the measurement location will have to be deferred further away from the injection point, thus resulting in reduced CT credit. In addition, an unstable residual, when tied to an automated ozone dosing system, causes wide swings in the applied ozone dosage and generally results in higher ozone production costs. Rapid mixing and mass transfer are thus especially important for disinfection applications.
This paper develops a CFD based mass transfer model. This mass transfer model will focus on pipeline flash reactors (PFR) combined with SVI. Mass transfer in PFR’s occurs via three mechanisms. The first mechanism is the mixing of side-stream water with ozone at the injector. The second mechanism is the mixing of undissolved gas with the main flow, and the third mechanism is the mixing of ozone-saturated water with the main flow. This paper studies the effect on local mixing on the overall mass transfer of ozone into water in an in-line contacting system consisting of SVI and a PFR.

Methodology

Description of Facility

The OUC Southwest WTP was designed to oxidize H₂S in 45.6 million gallons per day (MGD) well water with ozone produced by three 1,260 ppd oxygen fed generators. The H₂S concentration range in the well water is 0.9 to 3.5 mg/L, depending on the well sources – at this specific plant the average concentration was measured to be 2 mg/L for design purposes. The temperature of the deep well water is nearly constant at 78°F. The pH is approximately 7.5 units, hardness approximately 130 mg/L and alkalinity is approximately 110 mg/L. At this pH, 50% of total H₂S exists as un-ionized H₂S and the remaining 50% as HS⁻ ions. Mazzei designed a side-stream venturi injection system for odor control that utilized 5 venturi injectors, each feeding two nozzles. The system was designed to operate at flow rates ranging from a minimum daily flow of 10.4 MGD to a maximum flow of 45.6 MGD. Figure 1, Figure 2 and Figure 3 describe details of the installation. Immediately downstream of the pipeline flash reactor is a helical static mixer for additional mixing as well as an orifice mixing plate to provide additional mixing and backpressure. Treated water is routed to a contact basin downstream. The ozone residual is measured immediately prior to discharging into the contact basin.

Figure 1. Installation at OUC Southwest plant.
CFD Modeling Methodology

Modeling methodology will be described in the following sequence – multiphase modeling, turbulence modeling, mass transfer modeling and species transport modeling.

Multiphase Modeling

Typically, multiphase flows are modeled with a Eulerian-Eulerian approach or an Eulerian-Lagrangian approach (van Wachem et al., 2003). The latter is commonly accepted to be suited to modeling dilute flows, defined as flows with a second phase volume fraction (PVF) less than 10% (Brennen, 2005). Since the gas volume fractions in this study exceed 10% (particularly at...
the nozzles and in their close vicinity, a Eulerian-Eulerian approach was utilized. Since the phase interaction is only in one direction – that is, the gas doesn’t affect the flow of the water, whereas the water affects the flow of the gas, a simplified version of the Eulerian-Eulerian approach, the mixture model was utilized in this study.

The mixture model (Manninen et al., 1996) is used to model bubbly flows where phases move at different velocities. In the mixture model, phases are assumed to be interpenetrating. The mixture model solves the continuity equation for the mixture, the momentum equation for the mixture, the energy equation for the mixture, and the volume fraction equation for the secondary phases, as well as algebraic expressions for the relative velocities (if the phases are moving at different velocities).

The continuity equation for the mixture is written as follows:

\[\frac{\partial (\rho_m \bar{u}_m)}{\partial t} + \text{div}(\rho_m \bar{u}_m) = 0 \]

Where \(\bar{u}_m \) is the mass-averaged velocity, defined as \(\rho_m \) is the mixture density, calculated as follows:

\[\rho_m = \sum_{k=1}^{n} \alpha_k \rho_k \]

Where \(\alpha_k \) is the volume fraction of phase k.

The generalized momentum equation for the mixture can be obtained by summing the individual momentum equations for all phases. This is derived and solved for x, y and z components.

\[\frac{\partial (\rho_m \bar{v}_m)}{\partial t} + \nabla \cdot (\rho_m \bar{v}_m \bar{v}_m) = -\nabla p + \nabla \cdot \left(\mu_m \left(\nabla \bar{v}_m + \nabla \bar{v}_m^T \right) + \rho_m \ddot{\bar{g}} + \ddot{\bar{F}} \right) + \nabla \cdot \left(\sum_{k=1}^{n} \alpha_k \rho_k \ddot{\bar{v}}_{dr,k} \right) \]

Where \(n \) is the number of phases, \(\ddot{\bar{F}} \) is body force and \(\mu_m \) is the viscosity of the mixture. \(\ddot{\bar{v}}_{dr,k} \) is the drift velocity for the secondary phase k calculated as:

\[\ddot{\bar{v}}_{dr,k} = \ddot{v}_k - \ddot{v}_m \]

The relative velocity (also referred to as the slip velocity) is defined as the velocity of a secondary phase (p) relative to the velocity of the primary phase (q).

\[\ddot{v}_{pq} = \ddot{v}_p - \ddot{v}_q \]

The algebraic slip mixture model was utilized to model the slip velocity to account for the velocities of the gas and water phases.

Turbulent Flow Modeling
Hydrodynamics in the PFR vary as a function of x, y and z spatial coordinates. The dominant flow regime is turbulent in the PFR. A Reynolds averaged Navier-Stokes or RANS approach (Ferziger et al., 2002) was utilized to resolve turbulent flow. The RANS approach is based on “time averaging” the Navier-Stokes equations. This process yields additional terms in the standard transport equations, termed the “Reynolds stresses”. In the standard k-ε model (Lauder and Spalding, 1974) for turbulent flow, a closed solution is obtained for the turbulent transport equations by relating Reynolds stresses to an eddy viscosity (µ). Newton’s law of viscosity is applied to illustrate the relationship between viscous stresses and “Reynolds stresses”. It should be noted that eddy viscosity (µt) is a non-physical quantity, and is expressed by the following equation:

[6] \[\mu_t = f \left(\frac{\rho k^2}{\varepsilon} \right) \]

In this expression, k is the turbulent kinetic energy per unit mass.

[7] \[k = 0.5(u'^2 + v'^2 + w'^2) \]

In this expression, \(u', v', w' \) are vector components of velocity fluctuations due to turbulence and \(\varepsilon \) is the dissipation rate of turbulent kinetic energy per unit mass. The transport equations of the standard k-ε model are expressed in the following equations:

For k:

[8] \[\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k + G_b - \rho \varepsilon + S_k \]

For ε:

[9] \[\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{1\varepsilon} \frac{\varepsilon}{k} (G_k + C_3 \varepsilon G_b) - C_{1\varepsilon} \frac{\varepsilon^2}{k} + S_k \]

In these expressions \(G_k \) represents generation of \(k \) due to the mean velocity gradients; \(G_b \) is generation of \(k \) due to buoyancy; \(C_{1\varepsilon}, C_{2\varepsilon} \) and \(C_{3\varepsilon} \) are experimental constants; \(\sigma_k \) and \(\sigma_\varepsilon \) are the turbulent Prandtl numbers for \(k \) and \(\varepsilon \), respectively; \(S_k \) and \(S_\varepsilon \) are user-defined source terms. The constants were determined by Launder and Spalding (1974). It was hypothesized that isotropy of Reynolds stresses can be assumed reasonably in the case of the PFR. The values of \(C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}, \sigma_k \) and \(\sigma_\varepsilon \) used in the model are 1.44, 1.92, 0.09, 1.0 and 1.3, respectively (Launder and Spalding, 1974). The no-slip boundary condition, along with effects of viscous blocking and kinematic damping creates large gradients in solution variables near the walls of the PFR. To account for these phenomena in the turbulence model, semi-empirical “wall functions” for the k-ε model were used.

Mass Transfer Modeling

Previous studies on ozone mass transfer modeling have focused on bubble columns and packed towers (Cockx et al., 1999; Gong et al., 2007; Zhang et al., 2007; Quiñones-Bolaños et al.,...
Transfer of ozone in gas form to ozone in dissolved form was modeled by utilizing a subroutine which checked the concentration of ozone in each cell at the end of each numerical iteration. The concentration in each cell in the computational domain is a function of the volume of that cell that is occupied by dissolved versus gaseous ozone. That in turn is a function of the solved local velocity in 3 dimensions. If the concentration of ozone in the cell is equal to or greater than the saturation concentration of ozone per Henry’s law, then ozone in the gas phase is allowed to dissolve in the water. This subroutine is based on the two-film model of gas-liquid mass transfer (Rakness, 2011; Beltran, 2003), where the flux, \(J \) is defined as:

\[
J = k_L a (C^*_L - C_L)
\]

Where \(k_L \) is the local liquid mass transfer coefficient, \(a \) is specific interfacial area, \(C^*_L \) is the saturation concentration of dissolved ozone and \(C_L \) is the local concentration of ozone.

A large number of relationships exist for \(k_L a \) calculation for bubble columns (Quiñones-Bolaños et al., 2002). However, very few \(k_L a \) studies have been performed for large scale in-line contactors. Applying \(k_L a \) values from literature for bubble columns resulted in a significant deviation in predicted mass transfer efficiency. Subsequently, an iterative process was then utilized to calibrate the rate constant to match the mass transfer noticed at one measured test point. The initial estimate was based on a previous bench-scale study of mass transfer efficiency in pipeline flash reactors (Baawain et al., 2011). The \(k_L a \) determined for thus was then kept constant for three validation test points. It is noted that ozone decay is not modeled separately, as it will be included in the calibrated \(k_L a \).

Reactive Species Transport Modeling

The following parameters were utilized in this study (mentioned previously and re-stated here) based on experimental measurements of water quality of sulfide-containing wells in Florida (Rakness, 2011). The average \(\text{H}_2\text{S} \) concentration range is 2 mg/L. The temperature of the deep well water is nearly constant at 78°F. The pH is approximately 7.5 units, hardness approximately 130 mg/L and alkalinity is approximately 110 mg/L. At this pH, 50% of total \(\text{H}_2\text{S} \) exists as un-ionized \(\text{H}_2\text{S} \) and the remaining 50% as \(\text{HS}^- \) ions.

The general stoichiometric relations that describe the reaction of ozone with \(\text{H}_2\text{S} \) are as follows:

\[
\text{H}_2\text{S} + O_3 \rightarrow S + O_2 + \text{H}_2\text{O}
\]

\[
S^{2-} + 4O_3 + 4\text{H}_2\text{O} \rightarrow SO_4^{2-} + 4O_2
\]

Previous work (Mark et al., 2011; Overbeck, 1995) has suggested that the yield of \(SO_4^{2-} \) is 1 mol per 2.4 to 2.46 mol of ozone. However, accounting for ozone demand, OUC has typically used a
dosage where the O₃/H₂S ratio is 4:1 (Rakness, 2011). The actual average applied ozone dose at
the OUC SW WTP was 9.1 mg/L, for the installation modeled in this study. At this dose of
ozone, the hydrogen sulfide is almost instantaneously oxidized to sulfate.

The generalized conservation equation for species transport is written as follows:

\[\frac{\partial}{\partial t} (\rho Y_i) + \nabla \cdot (\rho \vec{V} Y_i) = -\nabla \cdot \vec{J}_i + R_i + S_i \]

[13]

Where \(R_i \) is the net rate of production of species \(I \) by the defined chemical reaction. \(S_i \) is rate of
creation by addition from the dispersed phase and from any other sources. A unidirectional
Finite-Rate model was utilized to model the oxidation process of hydrogen sulfide by ozone. The
inputs to the model included the rate constant. The rate constants were based on previous work
by Mark et al (2011). However, as expected, rate constants derived under controlled conditions
failed to predict the mass transfer of ozone with the desired accuracy. An iterative process was
then utilized to calibrate the rate constant to match the mass transfer noticed in one measured
data point. This was then kept constant for all the other simulations.

Discretization and Solution Schemes

The computational geometry was discretized using an unstructured mesh with tetrahedral
elements, shown in Figure 4. The TGrid (Qi et al., 2006) algorithm was used to generate the
mesh. A Finite Volume Method (FVM) was used to convert the governing equations to
algebraic equations. A cell-centered scheme was used in the process of discretization. Values of
cell faces were computed using a Second-Order Upwind Scheme (Barth et al., 1989). The
Second-Order Upwind Scheme is typically suggested as a requirement to procure accurate results
with unstructured meshing schemes (ANSYS, 2011).
Pressure-velocity coupling is an issue that must be addressed during the process of obtaining a sequential solution to the momentum and continuity equations. The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm (Patankar, 1980) was used to introduce a pressure term in the continuity equation. The SIMPLE algorithm was chosen as the consistent approach to pressure-velocity coupling across the range of operating flow rates. The criterion for iterative convergence was set at 1×10^{-9}, which is a typical constraint for multiphase flows which consider chemical kinetics (Ranade, 2002).

Results

In order to quantitatively define the extent of mixing, a variable named “Uniformity Index” (UI) was utilized. UI represents how the gas phase varies over a defined surface, where a value of 1 indicates the highest uniformity. The area weighted UI captures the variation of the quantity (for example; the species concentration). The area-weighted UI of the gas phase was calculated using the following equation:

$$UI = 1 - \frac{\Sigma_{i=1}^{n}[|\phi_i - \bar{\phi}_a|]A_i}{2|\phi_a| \Sigma_{i=1}^{n} A_i}$$

[14]

Where i is the facet index of a surface with facets, $\bar{\phi}_a$ is the average value of the gas phase volume fraction over the outlet boundary, given as follows:

$$\bar{\phi}_a = \frac{\Sigma_{i=1}^{n} \phi_i A_i}{\Sigma_{i=1}^{n} A_i}$$

[15]
As a first step towards ensuring, numerical accuracy, grid independence was tested. Briefly, a solution is said to be grid-independent when progressively finer meshes do not affect model predictions. Figure 5 depicts the effect of finer meshes on predicted UI in the PFR. Grid independence is achieved at a mesh density of approximately 9.1 million computational cells.

Model Validation

The model was validated by utilizing the calibrated k_L and reaction rate constant for three test points. The measured mass transfer efficiency (MTE) was compared to the modeled mass transfer efficiency. Relative percent difference (RPD) was chosen as a parameter by means of which to compare the measured data with the modeled data. RPD was calculated as follows:

\[
RPD = 100 \times \left(\frac{\text{Measured MTE} - \text{Modeled MTE}}{\text{Measured MTE}} \right)
\]

Results are presented in Table 1. Test point 1 is the calibration point for k_L and the reaction rate constant for H$_2$S and ozone. Test points 2, 3 and 4 are validation test points. All flow rates and ozone mass transfer data are from field measurements.

Results indicate that the model tends to under-predict MTE at higher flow rates. It is hypothesized that the higher turbulence and hence dissipation in the pipeline contactor at high flow rates could be the cause for this. Overall, the CFD model predicts MTE with an error less than 2%.
Figure 6 depicts contours of ozone concentration across a horizontal (top view) and a vertical (side view) plane, respectively, for test point 2. Visual inspection reveals that the ozone concentration is mostly uniform across the cross section of the pipe, almost immediately after side-stream injection with optimized nozzles. It is also noticed that most of the transfer occurs rapidly, in the close vicinity of the jetting nozzles. This can be correlated to mixing uniformity. In order to obtain this optimal mixing, various configurations of nozzles were tested using CFD. Parameters that were analyzed included nozzle sizing, nozzle velocity, spacing between nozzles, nozzle orientation, nozzle penetration into the main pipeline, mainline velocity, side-stream ratio and gas to liquid ratio. Figure 7 depicts mixing UI as a function of each PFR configuration. Each value represents the average UI across a radial cross-section.

TABLE I. Comparison of measured and modeled mass transfer efficiency.

<table>
<thead>
<tr>
<th>Test Point (TP)</th>
<th>Number of nozzles in use</th>
<th>Main flow rate (gpm)</th>
<th>Total side-stream water flow rate (gpm)</th>
<th>Total gas flow (side-stream) (scfm)</th>
<th>Mass Transfer Efficiency (%)</th>
<th>Relative Percent Difference (RPD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP 1 (calibration)</td>
<td>4</td>
<td>9583</td>
<td>1180</td>
<td>88</td>
<td>87.3</td>
<td>88.5</td>
</tr>
<tr>
<td>TP 2 (validation)</td>
<td>4</td>
<td>9,583</td>
<td>1190</td>
<td>69</td>
<td>90.9</td>
<td>92.4</td>
</tr>
<tr>
<td>TP 3 (validation)</td>
<td>4</td>
<td>13,264</td>
<td>1181</td>
<td>94</td>
<td>99.1</td>
<td>97.8</td>
</tr>
<tr>
<td>TP 4 (validation)</td>
<td>6</td>
<td>20,972</td>
<td>2150</td>
<td>141</td>
<td>98.8</td>
<td>96.9</td>
</tr>
</tbody>
</table>
Conclusions

CFD combines computational methods with engineering physics, chemistry and mathematics to solve fluid flow challenges. A CFD approach to examining and modeling multiphase hydrodynamics provides an in-depth insight into flow patterns, mixing, mass transfer and
chemical species transport, which in turn allows design engineers to make informed decisions and offer innovative solutions to lower cost and improve performance. Result of this study indicate that CFD can successfully be utilized to model mixing and mass transfer in SVI based pipeline contactor systems. Results suggest the importance of local mixing on local mass transfer. An advantage of pipeline contacting is that it removes the mixing uncertainty caused by phenomena such as short-circuiting seen in contact basin and the bulk of the water can be contacted in a controlled manner. In addition, rapid transfer combined with a uniform mix can allow for CT credit to be applied significantly earlier in the system.

It is important to note that optimal mixing combined with a carefully engineered corresponding ozone dose translates to rapid and uniform mass transfer. In order to optimize mixing, variables including but not limited to nozzle sizing, nozzle velocity, spacing between nozzles, nozzle orientation and nozzle penetration into the main pipeline should be investigated. This is especially crucial for retrofits where the ozonation system has to function within the constraints of existing upstream and downstream processes and plumbing. Further validation of the model is in process, as newer plant data becomes available.
References

